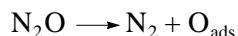


Adsorption and Reactions of N₂O on Transition Metal Surfaces

A. V. Zeigarnik

Zelinskii Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991 Russia

Received June 24, 2002

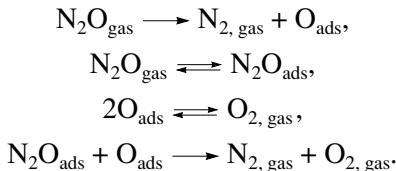

Abstract—Data on the interaction of nitrous oxide with polycrystalline and low-index single crystal surfaces of transition metals (Cu, Ag, Pt, Pd, Ni, W, Ir, Rh, and Ru) are reviewed. The kinetics of N₂O adsorption, desorption, and dissociation N₂O on these surfaces, as well as the energetics and mechanisms of these processes, are considered. New calculated data on the energetics of nitrous oxide transformations on (111) single crystal-line transition metal surfaces are reported.

INTRODUCTION

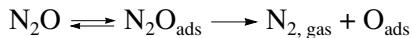
The catalytic chemistry of nitrous oxide has attracted considerable attention among researchers due to the problems of environmental chemistry and NO_x decomposition [1, 2]. Furthermore, N₂O is an interesting oxidant that can be a source of one oxygen atom and a nitrogen molecule [3]. Nitrous oxide is also interesting from the standpoint of theoretical problems of catalysis. This is a linear molecule with multiple bonds whose coordination on bulk metals and single crystalline planes is poorly studied. There are many questions relevant to the kinetics of N₂O decomposition on these surfaces. For instance, it is unclear why the (111) surfaces are inert toward N₂O dissociation, whereas other planes and polycrystalline surfaces are active. This short review deals with the problems of kinetics and mechanisms of N₂O adsorption, desorption, and decomposition. Note that there are much less data for N₂O than for NO adsorption [4]. Problems related to the use of N₂O_{ads} as an oxidant in catalytic and other reactions, the interaction of nitrous oxide with metal oxides, supported metal catalysts, zeolites, and other nonmetallic materials have been considered in other review papers [1–3].

MOLECULAR VERSUS DISSOCIATIVE ADSORPTION OF N₂O

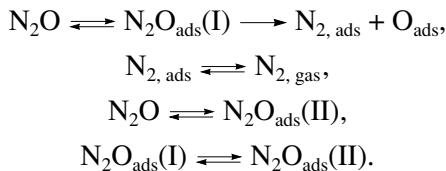
It is known that nitrous oxide adsorbs on many transition metal surfaces: tungsten, rhenium, ruthenium, rhodium, iridium, nickel, palladium, platinum, copper, and silver. Depending on the metal, surface coverage, and plane, molecular or dissociative adsorption


can be observed. Only molecular adsorption was observed on the surfaces of Ir(111) at >84 K [5], Ag(111) at >83 K [6], Ag(110) at 30 K [7], Ni(111) at >85 K [8], Pt(111) at >50 K [9, 10], and on a layer of Pd(111) on Ta(110) at >95 K [11].

Nitrous oxide poorly dissociates on the Cu(100) surface [7, 12] at low temperatures. According to [13], nitrous oxide does not adsorb on the Cu(100) and Cu(111) surfaces at 100 K even upon an exposure of 1000 Langmuir (L). At higher temperatures (>300 K) and substantial exposures (~10⁶ L), N₂O dissociates on the Cu(100) and Cu(111) surfaces, but molecular adsorption of nitrous oxide has not been observed. At 573 K and 10⁻⁴ Torr, the probability of N₂O dissociation on the Cu(111) surface is estimated as 10⁻⁵ [12]. Thus, the absence of apparent molecular adsorption at low temperatures does not exclude dissociative adsorption at high temperatures.


Using the method of thermal desorption spectroscopy (TDS), chemisorbed and multilayer physisorbed nitrous oxide has been observed. According to TDS data, the binding energies of multilayer and submonolayer N₂O are rather close. Physically adsorbed N₂O desorbs from the Ir(111) surface at 93 K (multilayer adsorption) and chemisorbed N₂O desorbs at 102 K (<1 monolayer, ML) [5]. Similar data have been reported for Ag(111) [6]. For this surface, two thermal desorption peaks were observed: at 98 K (multilayer adsorption) and 94–102 K (chemisorbed N₂O). On the Ni(111) surface, N₂O weakly adsorbs without dissociation and forms three different species assigned to (a) multilayer adsorption (a desorption peak at ~70 K), (b) monolayer adsorption (a desorption peak desorbs at ~92 K), and (c) submonolayer adsorption (~0.1 ML, a desorption peak at ~100 K) [8]. In the case of multilayer adsorption on Pt(111), N₂O desorbs at 86 K [9]. Kiss *et al.* [10] observed two thermal desorption peaks of N₂O: at 75–87 K (multilayer adsorption) and 97–102 K (chemisorption).

The adsorption of N₂O with dissociation into molecular nitrogen and atomic oxygen occurs on the surfaces of Pd(110) at 95 K and even lower temperatures [14–16], Ir(110) in the temperature range 350–500 K [17], Rh(110) at 200–573 K [18], Ni(110) at 323–873 K [19], Cu(110) at >90 K [13, 20, 21], Ru(0001) at >83 K [22–25], and Rh(100) at 530–680 K [26]. According to


Onchi and Farnsworth [27], the probability of nitrous oxide dissociation at 473–573 K on the Ni(100) surface is rather low and can be explained by the presence of defects. However, according to Hoffman and Hudson [28], nitrous oxide dissociates on the Ni(100) surface at 200–800 K. On the stepped surface Ni(755) = Ni(s)[6(111) × (100)], N₂O dissociates at temperatures lower than 200 K [29], and steps are the active sites of dissociation. Nitrous oxide dissociation readily occurs on polycrystalline surfaces: iridium, palladium [30], platinum [31, 32], rhodium (even at room temperature) [33], and rhenium (from room temperature to 1200 K) [34]. It has been found that rhodium catalysts readily decompose N₂O under catalytic conditions at 523–623 K [35], and oxygen is released to the gas phase. On the other hand, thermal desorption studies in a vacuum showed that atomic oxygen is stable on the rhodium surface up to temperatures as high as ~1100 K [35]. A mechanism has been proposed that explains this discrepancy [35]:

In the case of dissociative adsorption, a mobile precursor model has been suggested [14, 26, 30–34]:

or a model with two precursors N₂O_{ads}(I) and N₂O_{ads}(II) [19, 28]

The existence of a precursor is usually judged by the independence of the initial sticking coefficient of the surface coverage [14].

Molecular adsorption can be observed in parallel with the dissociative adsorption. This has been convincingly demonstrated for surfaces that are moderately active toward nitrous oxide dissociation [22–25]. Haq and Hodgson [14] proposed a mechanism according to which N₂O either weakly adsorbs on the surface to form a surface intermediate, which is a precursor of dissociation, or forms a more strongly adsorbed N₂O species.

On some active metals (such as tungsten and ruthenium), the N–N bond is cleaved. On the W(110) surface, N₂O dissociatively adsorbs at room temperature and forms atomic nitrogen and atomic oxygen [24]. Molecular nitrogen does not desorb [36]. Weinberg and Merrill [37] showed that nitrous oxide adsorbs on the W(100) surface at 295 and 500 K, and both of its bonds are cleaved. When the substrate is heated upon N₂O adsorption, two N₂ desorption peaks are observed: one

is assigned to adsorbed molecular nitrogen and the other is assigned to atomic nitrogen. The Ru(1010) surface is also very active toward N₂O dissociation [38]. The cleavage of the N–O bond with the formation of adsorbed atomic oxygen and gaseous nitrogen occurs at room temperature. At higher temperatures, all bonds are cleaved in N₂O to form atomic oxygen and atomic nitrogen on the surface.

On some of the surfaces studied, N₂O adsorption has not been detected. Thus, on the Rh(111) surface, N₂O adsorbs neither molecularly nor dissociatively at temperatures from room temperature to 900 K [18]. Li and Bowker [18] assumed that adsorption requires overcoming a high activation barrier, but this assumption seems highly improbable because the activation energy of adsorption is usually low or equal to zero on clean surfaces. According to Spitzer and Luth [13], in the temperature range 90–300 K, nitrous oxide is not adsorbed in Cu(111). We cannot exclude that molecular adsorption of N₂O is possible on almost all surfaces, but researchers do not always explore wide ranges of temperatures and exposures.

The incompleteness of data prevents us from revealing the trends of activity toward N₂O adsorption and dissociation across the periodic table (see Table 1). However, we see a pronounced structural sensitivity of nitrous oxide decomposition. Polycrystalline and fcc (110) surfaces are more active toward nitrous oxide dissociation than the (100) surfaces. The latter are more active than (111). On the (111) surfaces, adsorption may not occur or is molecular. The only fcc (110) surface studied on which no N₂O dissociation was observed is Ag(110) [7]. On most metals and surfaces (except for such active surfaces as W(110) and Ru(1010)), the dissociation occurs with N–O bond scission and without N–N bond scission.

Thus, fcc (110) surfaces and some fcc (100) and (111) surfaces, bcc W(100), W(110), and supposedly W(111) surfaces, various hcp surfaces of Ru, and polycrystalline surfaces are active in nitrous oxide dissociation. On the fcc surfaces (110), electron-induced N₂O dissociation (Ag(111) [6]) and dissociation induced by ultraviolet irradiation (Pt(111) [10]).

Let us now consider some of the active surfaces in more detail.

Fcc (110) Surfaces

On the surfaces of Ni(110), Pd(110), Rh(110), Ir(110), and Cu(110), nitrous oxide dissociates to form adsorbed atomic oxygen and gaseous nitrogen.

On Pd(110) at 85, the sticking coefficient remains constant up to 0.8 ML and then drastically decreases to zero at 1 ML [14]. When the reaction is completed (when adsorption ends due to site blocking), 0.15 ML of the surface is filled with atomic oxygen and 0.85 ML is filled with adsorbed N₂O (the number of adsorption

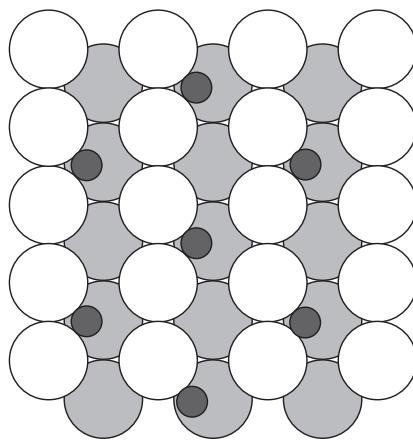
Table 1. Comparison of the activities of metals and their surfaces

Group \ Period	VIB	VIIB	VIII			IB
4	Cr No data	Mn No data	Fe No data	Co No data	Ni (110) 323–873 K dissociative (100) 200–800 K dissociative (111) <100 K molecular	Cu (110) >90 K dissociative (100) 90–300 K molecular >300 dissociative (111) 90–300 K no adsorption, >300 dissociative
5	Mo No data	Tc No data	Ru (0001) 75–115 K: N ₂ O >115 K: N ₂ + O (10 10) 150–295 K: N ₂ + O >295 K : N + O	Rh (110) 200–573 K dissociative (100) 530–680 K dissociative (111) 295–900 K no adsorption (poly) dissociative	Pb (110) > 85 dissociative (100) no data (111) > 95 K molecular (poly) dissociative	Ag (110) 30 K molecular (100) no data (111) > 83 K molecular
6	W (110) > 100 K dissociative (to N and O) (100) 295–500 K dissociative (to N and O) (111) No data	Re (poly) 295– 1200 K dissociative	Os No data	Ir (110) 350–500 K dissociative (100) no data (111) > 84 K molecular (poly) dissociative	Pt (110) no data (100) no data (111) > 75 K molecular (poly) dissociative	Au No data

Note: Poly denotes a polycrystalline surface.

sites is counted as the number of adsorbates divided by the number of surface atoms). On a clean Pd(110) surface, N₂O initially dissociates very efficiently (~60% of nitrous oxide consumed), then this reaction channel reduces to ~5% when the surface coverage reaches 0.5 ML. Further adsorption of N₂O occurs without dissociation. At higher temperatures (300, 473, and 573 K), the sticking coefficient decreases more rapidly as N₂O is consumed. The initial accumulation of the precursor is not observed. Atomic oxygen and desorbing nitrogen are formed. The reaction ceases when the surface becomes covered with 0.5 ML of atomic oxygen. At this moment, regular overlayer Pd(110)-c(2×4)O structures are formed (Fig. 1).

Analogous results have been obtained for the Rh(110) surface [18]. At 198, 440, and 573 K, the sticking coefficient decreases to zero at 0.5 ML O. The initial portions of the plots of the sticking coefficient versus surface coverage contained plateaus. The independence of the sticking coefficient on the surface coverage during an initial period points to the formation of a precursor as in the case of Pd(110). At 198 K, saturation was observed at 0.35 ML and a decrease in the sticking coefficient was more rapid. When adsorption was completed, no ordered overlayer structure


below room temperature was detected. At 573 K, an incompletely formed (2×2)p2mg structure was observed by LEED.

It is known for the Cu(110) surface that at 90 K nitrous oxide adsorption is initially dissociative, whereas when the surface coverage by oxygen reaches 0.25 ML, both molecular and dissociative adsorption occur. The reaction is completed when the surface coverage by oxygen reaches 0.5 ML [13]. According to UV photoemission spectroscopy, N₂O desorption occurs at 115 K. These data agree with those obtained earlier: at room temperature, the initial sticking coefficient is 0.15 and then it decreases to zero at saturation at 0.5 ML [39].

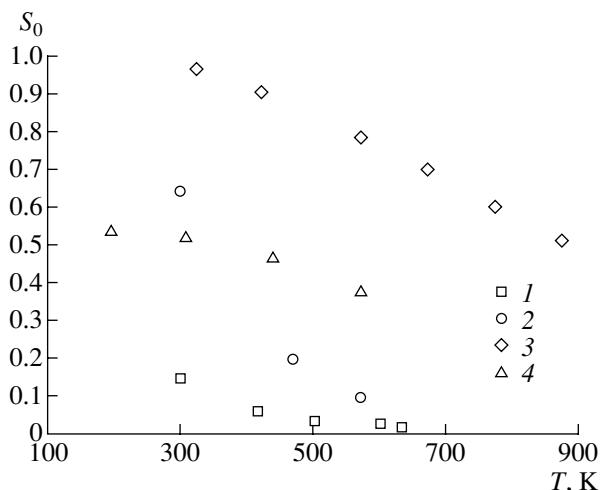
In the case of N₂O adsorption on Ni(110) [19], the initial sticking coefficient decreases from 0.97 to 0.52 with an increase in the temperature from 323 to 873 K. Data obtained in [19] point to the formation of a mobile precursor. The surface saturates at an oxygen coverage of 1/3 ML.

The adsorption of N₂O on Ir(110) has been poorly studied [17].

Data on the temperature dependences of the initial sticking probabilities are summarized in Fig. 2: above room temperature the activity of the (110) surface

Fig. 1. Ordered overlayer $c(2 \times 4)O$ structures on the fcc (110) surface (small circles denote oxygen atoms, large light circles denote metal atoms on the surface, and large dark circles denote metal atoms in the second layer).

decreases in the following series: $\text{Ni}(110) > \text{Rh}(110) > \text{Pd}(110) > \text{Cu}(110)$.


Fcc Surfaces (100) and (111)

On the $\text{Cu}(111)$ surface, the dissociation probability is very low: 10^{-9} at room temperature and it increases with an increase in the temperature, whereas the surface saturates at $\theta_O = 0.45$.

Nitrous oxide partly dissociates on a $\text{Ni}(100)$ surface. The probability of dissociation at 473–573 K is rather low and can be explained by the presence of defects [40]. Hoffman and Hudson [28] studied this process on $\text{Ni}(100)$ at 200–800 K in more detail. They found that, as in the case of $\text{Ni}(110)$, the dissociation is described by a precursor model. The long exposure of the sample to N_2O leads to the saturation of the surface by atomic oxygen up to the maximal coverages, which depend on the temperature (0.25 ML at 350–500 K). Nondissociated N_2O molecules are also present on the surface.

$\text{Ru}(0001)$ and $\text{Ru}(10\bar{1}0)$ Surfaces

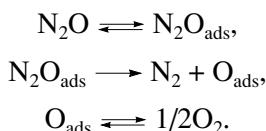
On an $\text{Ru}(0001)$ surface, N_2O adsorbs at 75 K [23]. Sample heating at low surface coverages led to the decomposition of N_2O and to the desorption of N_2 to the gas phase at 110–120 K. At higher initial surface coverages in this temperature range, N_2O desorption also occurred [23]. The adsorption of N_2O on $\text{Ru}(0001)$ has also been studied by Huang *et al.* [25]. At low exposures, one thermal desorption peak was observed at 129 K, which steadily switched toward higher temperatures (145 K) as the surface coverage increased. That is, the binding strength of N_2O increased with an increase in the surface coverage. With an increase in exposure, two additional peaks were observed (at 160–

Fig. 2. Temperature dependences of the initial sticking coefficients for (1) $\text{Cu}(110)$, (2) $\text{Pd}(110)$, (3) $\text{Ni}(110)$, and (4) $\text{Rh}(110)$.

165 K and 116–123 K). When N_2O was adsorbed at 100 K, N_2 was not detected in the desorption products. One of the thermal desorption peaks (at 160–165 K) was assigned to N_2O coadsorbed with atomic oxygen. This peak starts to reveal itself with an increase in the exposure.

The $\text{Ru}(10\bar{1}0)$ surface is very active toward nitrous oxide decomposition [41]. Most of nitrous oxide dissociates on this surface. It was found that N_2O occurs in two directions. One of them is N–O bond cleavage with the formation of atomic oxygen on the surface and the release of molecular nitrogen into the gas phase (this reaction occurs in the range from 150 K to room temperature); the other direction is the cleavage of all bonds in N_2O with the formation of atomic nitrogen and atomic oxygen on the surface (this occurs at higher temperatures). It was found that preadsorbed oxygen saturating the surface contaminates it, and dissociation does not occur. The amount of desorbed molecular nitrogen after nitrous oxide adsorption strongly depends on temperature and passes through a maximum near 600 K. The amount of desorbing molecular oxygen depends on temperature in a radically different manner. Two maxima are observed (at ~415 and 1100 K) and a minimum at 600 K. Moreover, when the surface is saturated with the equivalent amount of oxygen using O_2 rather than N_2O as a source, approximately two times more gaseous oxygen is formed in thermal desorption. Klein and Siegel [41] concluded that there are two pathways of N_2O activation, one of which is the formation of atomic nitrogen at high temperatures. However, they did not consider the reaction $\text{N}_2\text{O}_{\text{ads}} + \text{O}_{\text{ads}} \rightarrow \text{N}_{2,\text{gas}} + \text{O}_{2,\text{gas}}$ as a possible source of molecular nitrogen.

W(110) and W(100) Surfaces


When nitrous oxide is adsorbed on W(110) [36] at 100 and 300 K, the surface saturates at 0.5–0.75 ML. At 300 K, only dissociative adsorption occurs, whereas at 100 K molecular adsorption is also possible. Upon saturation of the surface due to nitrous oxide dissociation, the N : O ratio is lower than in the N₂O molecule (especially at higher temperatures). This fact points to the partial desorption of N₂. Nitrous oxide readily forms several layers on the surface.

Polycrystalline Surfaces

Nitrous oxide usually dissociates on polycrystalline surfaces. Information obtained on most of them is obtained by kinetic studies. Thus, Redmond studied nitrous oxide decomposition on the filaments of iridium, palladium [30] and platinum [31]. The following rate law was proposed to describe the decomposition of N₂O on platinum filaments

$$-\frac{dP_{N_2O}}{dt} = k_{app} P_{N_2O} P_{O_2}^{-0.5}, \quad (1)$$

where k_{app} is the apparent rate constant. This rate law was derived from the following mechanism

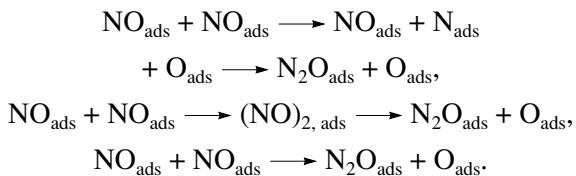
Redmond assumed that the rate-determining step is the dissociation of N₂O and obtained the following equation:

$$-\frac{dP_{N_2O}}{dt} = \frac{k_0 K_1 P_{N_2O}}{1 + K_1 P_{N_2O} + K_2 P_{O_2}^{1/2}}, \quad (2)$$

where k_0 is the rate constant of N₂O dissociation, K_1 and K_2 are the equilibrium constants of N₂O and O₂ adsorption. Then, assuming that $K_1 P_{N_2O} \ll K_2 P_{O_2}^{1/2}$ and $1 \ll K_2 P_{O_2}^{1/2}$, Eq. (2) transforms into Eq. (1). Redmond obtained the value of the apparent activation energy ($E_{app} = 32$ kcal/mol), which agrees with earlier data (± 1 kcal/mol). The heat of oxygen adsorption on platinum was also estimated: $Q_2 = 18$ kcal/mol. Then, we can obtain from the expression $E_{app} + Q_1 - Q_2 = E_{diss}$, which can be derived from Eqs. (1) and (2), that $E_{diss} = 14 + Q_1$, where Q_1 is the heat of N₂O adsorption. In my opinion, the above assumptions are incorrect. The reaction of N₂O decomposition has a low activation energy, which is close to Q_1 .

The decomposition of N₂O on iridium filaments is described by Eq. (1) at 1281–1617 K [30]. The apparent activation energy is ~40 kcal/mol. The addition of gaseous oxygen poisons the reaction.

The decomposition of nitrous oxide on palladium is described by the following rate law:


$$-\frac{dP_{N_2O}}{dt} = k_0 K_1 P_{N_2O} (1 + K_2 P_{O_2})^{-1},$$

where k_0 is the intrinsic rate constant of decomposition and K_1 and K_2 are the equilibrium constants of N₂O and O₂ adsorption. The apparent activation energy is ~30 kcal/mol. In the case of palladium, gaseous oxygen also poisons the reaction. The activity of metals in N₂O decomposition decreases in the series Pd > Pt > Ir.

Similar data for platinum were obtained in [32] for the temperature range 773–1473 K. At 773–873 K, the rate of N₂O decomposition is proportional to the partial pressure of nitrous oxide and is in inverse proportion to the oxygen pressure. At temperatures above 1173 K, there is a limit when retardation by oxygen is no longer effective. It was assumed that oxygen is removed from the surface via the reaction between atomic oxygen and nitrous oxide.

In addition to the interaction of gaseous nitrous oxide with the surface, adsorbed nitrous oxide can be obtained from NO on the surfaces of various metals. Thus, nitrous oxide is formed on Mo(110) at 90 K [4], W(110) at <150 K [42], Cu(110) at 90 K [4], Cu(100) [43], Cu(111) at 85 K [4, 44], Ag(111) at 100 K [4, 45–50], Pd(110) [51, 52], and Ag/Ru(0001) [53].

There is no general agreement regarding the mechanism of N₂O formation. It likely that mechanisms may differ depending on the reaction conditions and the surface. Possible pathways of N₂O formation can be described by the following reactions:

EFFECT OF COADSORBED OXYGEN

Coadsorbed oxygen atoms play an important role in nitrous oxide decomposition, whereas molecular oxygen desorbing at high temperatures from polycrystalline surfaces retards the reaction. Adsorbed atomic oxygen blocks active sites on the catalyst surface. Its binding to the surface is much stronger than the binding of adsorbates and, therefore, it is the least mobile. The binding energy of atomic nitrogen is even higher, but it is only formed on the most active surfaces. The formation of atomic oxygen leads to site blocking whereas nitrous oxide dissociation requires many free sites on the surface. Due to site blocking, bending or inclination of N₂O toward the surface, which is required for dissociation, is hindered and N₂O remains in the molecularly adsorbed state. Moreover, lateral interactions between the atomic oxygen and N₂O are attractive and lead to an increase in the activation energy and temperature of

nitrous oxide desorption. Let us consider some data that point to N_2O stabilization due to coadsorbed oxygen atoms.

Spitzer and Luth [13] compared data obtained by thermal desorption from a clean Cu(110) surface and a surface covered with 0.5 ML of atomic oxygen. In the latter case, the desorption temperature was higher, suggesting that nitrous oxide molecules are bound more strongly if there are coadsorbed oxygen atoms. That is, the lateral interactions of N_2O and O are attractive.

The stabilization of N_2O by atomic oxygen, which prevents N_2O from decomposition, was detected by thermal desorption mass spectrometry in the case of Ir(110) [17]. An increase in the apparent activation energy of nitrous oxide dissociation on Cu(110) was demonstrated by Auger spectroscopy [39].

On Ni(755) [29], the decomposition of N_2O occurs on steps. When they are occupied by atomic oxygen formed in this reaction, the decomposition of N_2O discontinues. Moreover, on clean steps, the reaction occurs at 105 K and N_2 desorbs at 170 K. When steps are partly filled with atomic oxygen, N_2O dissociates at 120 K and N_2 desorbs at this temperature. These data suggest that the activation energy of N_2O decomposition increases as oxygen is accumulated at the active sites on the surface. Molecular nitrogen starts to desorb more readily due to repulsion between N_2 and atomic oxygen or due to a change in the mechanism of nitrous oxide decomposition.

On the Ni(110) surface, a decrease in the sticking coefficient (and the rate of dissociation) was observed with an increase in the surface coverage by oxygen and described by the formula [19]

$$S = S_0 \left[1 + \frac{k'_d}{k_d + k_r} \left(\frac{\theta/\theta_{\text{sat}}}{1 - \theta/\theta_{\text{sat}}} \right) \right]^{-1}, \quad (3)$$

where S_0 is the initial sticking coefficient; k'_d is the desorption rate constant of spectator N_2O , which does not dissociate but can be transformed into a precursor; k_d is the rate constant of precursor desorption; and k_r is the rate constant of $\text{N}_2\text{O}_{\text{ads}}$ dissociation into $\text{N}_{2,\text{ads}}$ and O_{ads} . That is, oxygen rapidly poisons the metal surface and the reaction is completed at a saturation coverage θ_{sat} equal to 1/3 ML. An analogous formula describes well the dissociative adsorption of N_2O on Cu(111) [12].

Scholten *et al.* [54] showed that the reaction of N_2O decomposition can be used to determine the specific surface area of polycrystalline silver samples. They showed that the apparent activation energy of nitrous oxide decomposition strongly depends on the surface coverage by oxygen: each next 0.1 ML (calculated per one metal atom on the surface) corresponds to an increase in the activation energy by ~ 10 kcal/mol.

However, there are some data that contradict the role of oxygen described above. Thus, on the clean Ni(100) surface, the binding energy of nitrous oxide is

1.5 kcal/mmol higher than on a surface covered with 0.25 ML of atomic oxygen [28]. This fact provides negative evidence for attractive lateral interactions between atomic oxygen and nitrous oxide.

On Ru(0001), N_2O adsorption is also sensitive to the presence of preadsorbed oxygen [25]. Even a small amount of preadsorbed oxygen leads to an increase in the N_2O binding strength. However, the dependence of the stabilization efficiency of molecular N_2O adsorption on the surface coverage is not monotonic. After some optimum (at 0.1 ML), oxygen stops stabilizing molecular N_2O and starts to weaken its binding. The presence of oxygen also favors N_2O decomposition. The sticking coefficient on a surface with preadsorbed oxygen ($\theta_0 = 0.15$) is 2.7 higher than on a clean surface. This example shows that it is sometimes insufficient to compare the sticking probabilities on surfaces with and without preadsorbed oxygen. Rather, it is important to determine how oxygen formed in the reaction affects the nature of N_2O binding.

EFFECTS OF OTHER COADSORBATES

Shi and White [55] showed that, on an Ru(0001) surface with preadsorbed carbon, the rate of nitrous oxide dissociation noticeably decreases with an increase in the surface coverage by carbon. Thus, the initial dissociation probability of N_2O decreases by 90% when the coverage by carbon is as small as 0.09 ML. However, the high activity of a metal can be restored by heating the sample in the presence of nitrous oxide or oxygen and further recombinative desorption of atomic oxygen. A decrease in the activity of C/Ru(0001) compared to clean Ru(0001) is associated with site blocking. The decomposition of N_2O is much more sensitive to the presence of coadsorbates than the dissociative adsorption of oxygen. The presence of preadsorbed deuterium atoms on an Ru(0001) surface leads to a decrease in the temperature of N_2O desorption. That is, lateral interactions between $\text{N}_2\text{O}_{\text{ads}}$ and D_{ads} are repulsive [25]. The interactions between CO_{ads} and $\text{N}_2\text{O}_{\text{ads}}$ are repulsive as well [25].

GEOMETRY OF ADSORBED NITROUS OXIDE

The geometry of adsorbed nitrous oxide has been studied very poorly. It is clear that the geometry of adsorbed N_2O and site preference depend on the type of metal, the face of the crystal lattice, and the surface coverage with various adsorbates and their relative concentrations. Most researchers seem to agree that N_2O adsorbs via the terminal nitrogen atom. Data obtained by various experimental and theoretical methods are summarized in Table 2.

ENERGETICS

Data on the energetics of nitrous oxide adsorption and dissociation are scarce and contradictory. There is

Table 2. Data on the geometries of the N₂O adsorption states

Surface	Proposed geometry	Method	Ref.
Cu(110) 1 ML	Normal to the surface or at an angle close to 90°	Electron energy loss spectroscopy (EELS)	[13]
Cu(100) 1 ML		Near-edge X-ray adsorption fine structure (NEXAFS)	[7]
Cu(100) 0.5 ML		NEXAFS	[7]
Ag(100) (0.5 and 1 ML)		NEXAFS	[7]
Pt(111)		EELS	[9]
Ni(111) (1 ML)		NEXAFS	[8]
Pd(111)-c(2 × 2) 0.5 ML		DFT calculation (GGA-PBE)	[63]
Pd(110)-c(2 × 2) 0.5 ML		DFT calculation (GGA-PBE)	[63]
Ru(0001)	<p>Most preferable configuration $\angle \text{PdNN} = 130^\circ$, $\angle \text{NNO} = 156^\circ$, $\angle \text{NOPd} = 116^\circ$</p> <p>$\angle \text{PdNN} = 150^\circ$, $\angle \text{NNO} = 179^\circ$</p> <p>One of the favorable configurations</p> <p>At low surface coverages, the configuration is linear, normal to the surface with binding via the terminal nitrogen atom; at high coverages, the molecules is inclined</p>	High-resolution electron energy loss spectroscopy (HREELS)	[23]

Table 3. Binding energies of atomic adsorbates (in kcal/mol) on various surfaces

Q	Pt	Pd	Re	Rh	Ir	Ni	Au	Ag	Cu
Q_{0N}	69.6	78.0	85.2	69.6	76.2	81.0	58.2	60.0	69.0
Q_{0O}	51.0	52.3	75.0	61.2	55.8	69.0	45.0	48.0	61.8
Q_N for (111)/(0001)	116.0	130.0	142.0	116.0	127.0	135.0	97.0	100.0	115.0
Q_N for (100)	121.8	136.5	149.1	121.8	133.4	141.8	101.9	105.0	120.8
Q_N for (110)	125.3	140.4	153.4	125.3	137.2	145.8	104.8	108.0	124.2
Q_O for (111)/(0001)	85.0	87.2	125.0	102.0	93.0	115.0	75.0	80.0	103.0
Q_O for (100)	89.3	91.5	131.3	107.1	97.7	120.8	78.8	84.0	108.2
Q_O for (110)	91.8	94.1	135.0	110.2	100.4	124.2	81.0	86.4	111.2

only one paper reporting the energetics of N_2O adsorption calculated by density functional theory (DFT). Using this method in the GGA–PBE approximation, the binding energy of nitrous oxide on a Pd(110)– $c(2 \times 2)$ surface (0.5 ML N_2O) was calculated. The surface was modeled by a five-layer slab [63]. It was found that at this coverage the most energetically favorable is on-top binding via the terminal nitrogen atom. Two favorable geometries are shown in Table 2. Another favorable configuration is linear, normal to the surface. The calculated binding energies are 0.39 eV (9.0 kcal/mol) for vertical inclined binding via the nitrogen atom with bending, 0.38 eV (8.8 kcal/mol) for horizontal binding of a bent N_2O molecule via terminal atoms on two palladium atoms in the direction [001] along the surface, and 0.36 eV (8.3 kcal/mol) for vertical binding along the surface normal via the nitrogen atom. Based on theoretical and experimental data on the spatial distribution of desorbing N_2 molecules in the decomposition of N_2O on Pd(110), Kokalj *et al.* [63] assumed that a nitrous oxide molecule first adsorbs in a configuration close to vertical, then a molecular precursor is formed in which a terminal oxygen atom is close to the surface. After N–O bond cleavage, $N_{2,ads}$ and O_{ads} are formed and molecular nitrogen desorbs. The angular distribution of desorbing nitrogen molecules points to the formation of intermediate $N_{2,ads}$.

Proceeding from data on the temperature dependence of the initial sticking coefficient, Sau and Hudson [19] concluded that at the zero-coverage limit on Ni(110), the activation energy of N_2O desorption (E_d) is higher than the activation energy of dissociation (E_{diss}) by 3.7 kcal/mol. An analogous study of the Pd(110) surface at zero coverage gives the value $E_d - E_{diss} = 3.3$ kcal/mol [14], but this value was obtained using only three values of S_0 at different temperatures, whereas the fourth value (at 85 K) fell out of the series and was excluded from consideration. The activation energy of N_2O_{ads} dissociation, estimated from the temperature of the thermal desorption peak, was 9 kcal/mol [51].

For a Cu(111) surface, Habraken *et al.* [12] obtained that $E_d - E_{diss} = 10.4$ kcal/mol, although they mistakenly assigned this value to E_{diss} . The upper estimate of the

adsorption heat of N_2O on Cu(100) at a presumptive surface coverage of 0.5 ML O + 0.5 ML N_2O was obtained: 6 kcal/mol [43]. On a Cu(110) surface, the value $E_d - E_{diss}$ is 2 kcal/mol, according to data on the temperature dependence of the sticking coefficient [39].

On a Pt(111) surface, N_2O adsorbs in molecular form [9]. The initial heat of adsorption estimated from thermal desorption data is 5.6 kcal/mol and increases to 6.05 kcal/mol due to the attractive lateral interactions of adsorbed molecules as the surface is covered with N_2O molecules until saturation at 0.7 ML. In the case of multilayer adsorption, the heat is close to 5.2 kcal/mol.

On a clean Ni(100) surface [28], the kinetic parameters of steps were determined for the model with two precursors based on a study of the reaction on a clean surface and on a surface with preadsorbed oxygen. The value $E_d - E_{diss} = 3.7$ kcal/mol obtained earlier for Ni(110) was used [19]. On a clean Ni(100) surface, the activation energy of desorption is 6.2 kcal/mol (and the preexponential factor is $10^{12.3 \pm 3.2}$). The activation energy of desorption on 0.25 ML O/Ni(100) is 4.7 kcal/mol (the preexponential factor is $10^{10.5 \pm 2.2}$). The activation energy of dissociation is 2.5 kcal/mol [28].

Useful information on the energetics of adsorption of species participating in the reactions considered above and on the activation energies of these surface reactions can be calculated using the method of unity bond index–quadratic exponential potential (UBI–QEP). These calculations are discussed below. The systems under consideration have not been calculated before on such a scale. The essence of the method and its applications were described in detail in [56–58].

UBI–QEP ESTIMATES OF ADSORBATE BINDING ENERGIES AND ACTIVATION ENERGIES OF STEPS

Adsorbate Binding Energies

The method makes use of the data on the energies of two-center metal–adsorbate bonds Q_{0A} (A = N, O) tested in other system (Table 3) [57]. Table 3 also lists the values of binding energies of atomic adsorbates, which can be calculated from the energies of two-center

Table 4. Calculated binding energies of NO (Q_{NO} , in kcal/mol) on various surfaces

Surface	Pt	Pd	Re	Rh	Ir	Ni	Au	Ag	Cu
(111)/(0001)	27.8	34.4	40.5	27.8	32.9	36.9	19.9	21.1	27.4
(100)	28.8	35.7	—	28.8	34.1	38.3	20.5	21.7	28.3
(110)	29.4	36.5	—	39.4	34.9	39.2	20.8	22.1	28.9

Table 5. Calculated binding energies of N₂, O₂, and (NO)₂ (in kcal/mol) on various surfaces

Adsorbate	Pt	Pd	Re	Rh	Ir	Ni	Au	Ag	Cu
N ₂	10.8	13.4	15.8	10.8	12.8	14.4	7.7	8.1	10.6
O ₂	10.6	11.1	21.5	14.8	12.5	18.5	8.4	9.5	15.1
(NO) ₂	43.9	53.1	61.5	43.9	51.1	56.6	32.4	34.1	43.3

bonds in the framework of the UBI–QEP method according to the formula

$$Q_A = Q_{0A}(2 - 1/n), \quad (4)$$

where n is the number of metal atoms to which atom A binds. In the case of an atomic adsorbate on an fcc (111) or hcp (001) surface, $n = 3$. For fcc (100) and (110) surfaces, $n = 4$ and 5, respectively.

In the systems under consideration, reactions that occur or may occur involve the following surface species: N₂O_{ads}, O_{ads}, N_{ads}, NO_{ads}, N_{2,ads}, (NO)_{2,ads}, and O_{2,ads}. We use the binding energies of atomic adsorbates O_{ads} and N_{ads} as initial data. Other binding energies are calculated by the UBI–QEP method.

NO. At low coverages, NO usually binds via the nitrogen atom to the surface at hollow sites between three metal atoms on fcc (111) and hcp (001) surfaces or between four metal atoms on fcc (110) and (100) surfaces [4, 59]. In the zero-coverage limit, the binding energy of NO is calculated by the formula

$$Q_{\text{NO}} = \frac{Q_{0\text{N}}^2}{Q_{0\text{N}}/n + D_{\text{NO}}}, \quad (5)$$

where D_{NO} is the bond energy in NO (151 kcal/mol). The results of calculations of NO binding energies on various surfaces are summarized in Table 4. As can be seen, the differences in the binding energies on various surfaces of the same metal are small.

N₂. Adsorbed molecular nitrogen can be in two configurations, one of which is vertical or inclined to the surface (binding via one nitrogen atom), and the other is horizontal (binding via two nitrogen atoms). The ground state is on-top vertical binding normal to the surface via one nitrogen atom. On the other hand, the binding energies of N₂ in both states are very low, and easy transitions between the two states are possible. The best approximation in the framework of the UBI–QEP

method is the use of the formula for binding via two atoms (for homonuclear adsorbates):

$$Q_{\text{N}_2} = \frac{9Q_{0\text{N}}^2}{6Q_{0\text{N}} + 16D_{\text{N}_2}}, \quad (6)$$

where D_{N_2} is the energy of the N–N bond (226 kcal/mol). The binding energies of molecular nitrogen are the same for all crystalline planes of the same metal.

O₂. For molecular oxygen adsorbed on the surface, we use a similar formula:

$$Q_{\text{O}_2} = \frac{9Q_{0\text{O}}^2}{6Q_{0\text{O}} + 16D_{\text{O}_2}}, \quad (7)$$

where D_{O_2} is the energy of the O–O bond (119 kcal/mol).

(NO)₂. Nitric oxide dimers are characterized by a very weak N–N bond. Its energy is 2.87 kcal/mol [60]. This dimer binds to the surface via two nitrogen atoms, whereas oxygen atoms are directed upright at a certain angle [4]. For this case, a reasonable upper estimate of the binding energy is equal to the sum of binding energies of two NO molecules in the on-top state ($n = 1$).

Table 5 summarizes the results of calculations for N₂, O₂, and (NO)₂ binding in the zero-coverage limit.

N₂O. The calculation of N₂O binding energy in the framework of the UBI–QEP method is more difficult compared to the calculations of other adsorbates considered here [58]. Another problem is that the UBI–QEP method does not allow one to analyze which of the adsorption states is preferable by comparing the results obtained by different formulas.

The most probable ground state of N₂O is its orientation along the surface normal or at some angle to it. The binding is via the terminal nitrogen atom. At the same time, there is no appropriate UBI–QEP formula for calculating such binding of linear (or almost linear) triatomic molecules like N₂O or CO₂.

Table 6. Binding energies of N_2O (kcal/mol) calculated using different formulas

Formula	Pt	Pd	Re	Rh	Ir	Ni	Au	Ag	Cu
(8), $n = 1$	14.4	17.7	20.7	14.4	17.0	18.9	10.4	11.0	14.2
(9)–(10)	12.2	17.1	13.3	9.2	14.0	12.4	8.3	8.2	9.0
(9), (11), (12)	9.8	13.1	12.4	8.6	11.3	11.3	6.8	6.9	8.4

The formula

$$Q_{\text{N}_2\text{O}, \perp} = \frac{Q_{0\text{N}}^2}{Q_{0\text{N}}/n + D_{\text{N}_2\text{O}}} \quad (8)$$

somewhat overestimates the binding energy. An alternative method is the use of the formula for binding via two nitrogen atoms or via the central nitrogen atom and oxygen. In this case, the binding energies are even higher, and the contributions of bond energies to $D_{\text{N}_2\text{O}}$ in the adsorbed nitrous oxide molecule have to be postulated. The best variant is the quasi-diatom approximation, in which the $\text{N}_t\text{--N}_c\text{--O}$ molecule is considered as diatomic $\text{N}\cdots\text{O}$ with the bond energy $D_{\text{N}_2\text{O}} = 266$ kcal/mol, equal to the sum of $\text{N}\text{--O}$ and $\text{N}\text{--N}$ bond energies (subscripts t and c refer to the terminal and central nitrogen atoms). Then, the binding energy can be calculated by the formula

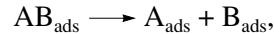
$$Q_{\text{N}\cdots\text{O}} = \frac{ab(a+b) + D_{\text{N}_2\text{O}}(a-b)^2}{ab + D_{\text{N}_2\text{O}}(a+b)}, \quad (9)$$

where

$$a = Q_{0\text{N}}^2(Q_{0\text{N}} + 2Q_{0\text{O}})/(Q_{0\text{N}} + Q_{0\text{O}})^2 \quad (10)$$

and

$$b = Q_{0\text{O}}^2(Q_{0\text{O}} + 2Q_{0\text{N}})/(Q_{0\text{O}} + Q_{0\text{N}})^2. \quad (11)$$


The use of this formula was recommended in [58], but it can be further improved [61]. The physical meaning of parameters a and b is as follows [62]: They take into account a decrease in $Q_{0\text{N}}$ and $Q_{0\text{O}}$ due to the repulsion between metal atom M_N bound to N and atom O and the repulsion between metal atom M_O bound to O and atom N ($\text{M}_\text{N}\text{--N}_t\text{--O--M}_\text{O}$). Formula (9) neglects the existence of the central nitrogen atom N_c between N_t and O ($\text{M}_\text{N}\text{--N}_t\text{--N}_c\text{--O--M}_\text{O}$). Because it is this atom that is the main source of repulsion from metal atoms, formula (9) overestimates the binding energy of N_2O . This limitation of formula (9) can be removed if a is calculated for the $\text{M}_\text{N}\text{--N}_t\text{--N}_c$ fragment and b is calculated for the $\text{N}_c\text{--O--M}_\text{O}$ fragment. Then, a is determined by formula (12), which is obtained by replacing $Q_{0\text{O}}$ by $Q_{0\text{N}}$ in formula (11):

$$a = Q_{0\text{N}}^2(Q_{0\text{N}} + 2Q_{0\text{N}})/(Q_{0\text{N}} + Q_{0\text{N}})^2 = 0.75Q_{0\text{N}}. \quad (12)$$

The results of calculations of the binding energy using different formulas in the zero-coverage limit is shown in Table 6. Calculation using formula (9) assumes that the on-top position of N_2O and, therefore, the results are applicable to all crystalline planes. Analysis of formula (9) shows that, with an increase in n , the binding energy increases and, therefore, the positions with a greater number of metal–nitrogen bonds should be preferable. However, as follows from the N_2O desorption temperatures, lower values of binding energies are more realistic. In further calculations we used data obtained using formulas (9), (11), and (12).

Activation Energies of Reactions and Diffusion

The UBI–QEP method makes it possible to calculate the activation energy of surface reactions [57]. To calculate the activation energy of a reaction of the type

the following formula is used:

$$E = \frac{1}{2} \left(\Delta H + \frac{Q_A Q_B}{Q_A + Q_B} \right), \quad (13)$$

where ΔH is the enthalpy of the surface reaction calculated from the thermodynamic cycle desorption–gas-phase reaction–adsorption:

$$\Delta H = Q_{\text{AB}} + D - Q_A - Q_B. \quad (14)$$

In this equation, D is the enthalpy of an analogous gas-phase reaction estimated from the bond strengths:

$$D = D_{\text{AB}} - D_A - D_B. \quad (15)$$

The activation energy of the reverse reaction is calculated using the condition

$$E_f = E_r - \Delta H. \quad (16)$$

In the case of dissociation of linear triatomic molecules like CO_2 and N_2O , the following formula is used instead of formula (14) [56]:

$$E = \Delta H + \frac{Q_A Q_B}{Q_A + Q_B}, \quad (17)$$

in which there is no multiplier 1/2. The value of E obtained in this way corresponds to the activation energy in the Lennard-Jones approximation.

If the activation energy is lower than zero, then a thermodynamic correction is introduced: this energy is

Table 7. Activation energies and enthalpies of reactions for three platinum surfaces (in kcal/mol)

Reaction*	D**	Pt(111)			Pt(100)			Pt(110)		
		E _{a, f}	E _{a, r}	ΔH	E _{a, f}	E _{a, r}	ΔH	E _{a, f}	E _{a, r}	ΔH
O + N ₂ = NO + N	75.0	27.0	0.0	27.0	24.5	0.0	24.5	23.4	0.4	23.0
NO + N ₂ = N ₂ O + N	111.0	23.9	0.0	23.9	19.0	0.0	19.0	16.1	0.0	16.1
2NO = N ₂ O + O	36.0	2.8	5.9	-3.1	1.7	7.1	-5.5	1.0	7.8	-6.8
O + NO = O ₂ + N	32.0	18.2	0.0	18.2	17.6	0.0	17.6	17.3	0.0	17.3
O ₂ + N ₂ = N ₂ O + O	79.0	7.2	1.6	5.6	5.1	3.7	1.7	3.8	5.0	-1.2
N ₂ = 2N	226.0	31.4	26.6	4.8	27.1	33.8	-6.8	24.4	38.2	-13.8
NO = O + N	151.0	13.4	35.6	-22.2	10.1	41.4	-31.3	8.1	44.8	-36.7
N ₂ O = NO + N	115.0	3.4	22.4	-19.1	0.0	25.8	-25.8	0.0	29.9	-29.9
N ₂ O = O + N ₂	40.0	0.0	46.1	-46.1	0.0	50.3	-50.3	0.0	52.9	-52.9
O ₂ = 2O	119.0	1.0	41.5	-40.4	0.0	48.9	-48.9	0.0	54.0	-54.0
(NO) ₂ = 2NO	3.0	5.2	13.9	-8.7	3.8	14.4	-10.6	2.9	14.7	-11.8
(NO) ₂ = N ₂ O + O	39.0	0.0	11.8	-11.8	0.0	16.1	-16.1	0.0	18.6	-18.6

* All molecules and atoms are surface species.

** D is the enthalpy of the analogous gas-phase reaction.

Table 8. Activation energies and enthalpies of reactions for the (111) surfaces of nickel, palladium, and platinum (in kcal/mol)

Reaction*	D**	Ni(111)			Pd(111)			Pt(111)		
		E _{a, f}	E _{a, r}	ΔH	E _{a, f}	E _{a, r}	ΔH	E _{a, f}	E _{a, r}	ΔH
O + N ₂ = NO + N	75.0	32.5	0.0	32.5	19.2	8.0	11.2	27.0	0.0	27.0
NO + N ₂ = N ₂ O + N	111.0	16.0	0.0	16.0	15.7	0.0	15.7	23.9	0.0	23.9
2NO = N ₂ O + O	36.0	0.0	16.6	-16.6	7.9	3.4	4.5	2.8	5.9	-3.1
O + NO = O ₂ + N	32.0	30.4	0.0	30.4	12.4	0.0	12.4	18.2	0.0	18.2
O ₂ + N ₂ = N ₂ O + O	79.0	0.0	14.4	-14.4	7.3	4.1	3.3	7.2	1.6	5.6
N ₂ = 2N	226.0	18.9	48.6	-29.6	22.2	42.8	-20.6	31.4	26.6	4.8
NO = O + N	151.0	0.0	62.1	-62.1	10.2	42.0	-31.8	13.4	35.6	-22.2
N ₂ O = NO + N	115.0	0.0	45.6	-45.6	0.0	36.3	-36.3	3.4	22.4	-19.1
N ₂ O = O + N ₂	40.0	0.0	78.1	-78.1	0.0	47.5	-47.5	0.0	46.1	-46.1
O ₂ = 2O	119.0	0.0	92.5	-92.5	0.0	44.2	-44.2	1.0	41.5	-40.4
(NO) ₂ = 2NO	3.0	2.1	16.3	-14.2	4.6	17.2	-12.6	5.2	13.9	-8.7
(NO) ₂ = N ₂ O + O	39.0	0.0	30.7	-30.7	3.3	11.4	-8.1	0.0	11.8	-11.8

* All molecules and atoms are surface species.

** D is the enthalpy of the analogous gas-phase reaction.

set equal to zero, and the energy of the reverse reaction is set equal to the enthalpy.

The activation energy of the reaction

is calculated using the formulas

$$E = \frac{1}{2} \left(\Delta H + \frac{Q_{AB}Q_C}{Q_{AB} + Q_C} \right), \quad (18)$$

$$\Delta H = Q_A + Q_{BC} + D_{BC} - D_{AB} - Q_{AB} - Q_C. \quad (19)$$

The direction of the reaction is chosen from the condition for the corresponding bond energies $D_{BC} > D_{AB}$. Using these formulas, we calculated the activation energies of reactions on single-crystalline surfaces.

The results of calculations of the activation energies of forward ($E_{a, f}$) and reverse ($E_{a, r}$) reactions, as well as the enthalpies of reactions in the forward direction (ΔH) for three platinum surfaces in the zero-coverage

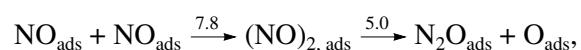
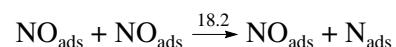
Table 9. Activation energies and enthalpies of reactions for the surfaces of rhenium(0001), rhodium(111), and iridium(111) (kcal/mol)

Reaction*	D**	Re(0001)			Rh(111)			Ir(111)		
		$E_{a,f}$	$E_{a,r}$	ΔH	$E_{a,f}$	$E_{a,r}$	ΔH	$E_{a,f}$	$E_{a,r}$	ΔH
$O + N_2 = NO + N$	75.0	33.4	0.0	33.4	44.0	0.0	44.0	23.5	2.6	20.9
$NO + N_2 = N_2O + N$	111.0	12.9	0.0	12.9	25.1	0.0	25.1	18.5	0.0	18.5
$2NO = N_2O + O$	36.0	0.0	20.5	-20.5	0.0	18.9	-18.9	3.8	6.2	-2.4
$O + NO = O_2 + N$	32.0	34.0	0.0	34.0	31.0	0.0	31.0	18.4	0.0	18.4
$O_2 + N_2 = N_2O + O$	79.0	0.0	21.1	-21.1	1.0	6.9	-5.9	5.1	5.0	0.1
$N_2 = 2N$	226.0	14.4	56.6	-42.2	31.4	26.6	4.8	24.2	39.3	-15.2
$NO = O + N$	151.0	0.0	75.5	-75.5	7.5	46.7	-39.2	8.8	44.9	-36.1
$N_2O = NO + N$	115.0	0.0	55.0	-55.0	2.2	22.4	-20.2	0.0	33.7	-33.7
$N_2O = O + N_2$	40.0	0.0	88.4	-88.4	0.0	64.2	-64.2	0.0	54.6	-54.6
$O_2 = 2O$	119.0	0.0	109.5	-109.5	0.0	70.2	-70.2	0.0	54.5	-54.5
$(NO)_2 = 2NO$	3.0	1.9	18.3	-16.5	2.6	11.3	-8.7	2.4	14.1	-11.7
$(NO)_2 = N_2O + O$	39.0	0.0	37.0	-37.0	0.0	27.6	-27.6	0.0	14.1	-14.1

* All molecules and atoms are surface species.

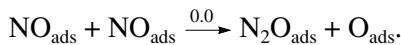
** D is the enthalpy of the analogous gas-phase reaction.

Table 10. Activation energies and enthalpies of reactions for the (111) surfaces of copper, silver, and gold (kcal/mol)



Reaction*	D**	Cu(111)			Ag(111)			Au(111)		
		$E_{a,f}$	$E_{a,r}$	ΔH	$E_{a,f}$	$E_{a,r}$	ΔH	$E_{a,f}$	$E_{a,r}$	ΔH
$O + N_2 = NO + N$	75.0	46.3	0.0	46.3	42.1	0.0	42.1	40.8	0.0	40.8
$NO + N_2 = N_2O + N$	111.0	25.5	0.0	25.5	33.3	0.0	33.3	34.7	0.0	34.7
$2NO = N_2O + O$	36.0	0.0	20.7	-20.7	0.0	8.8	-8.8	0.1	6.2	-6.1
$O + NO = O_2 + N$	32.0	32.3	0.0	32.3	23.6	0.0	23.6	21.5	0.0	21.5
$O_2 + N_2 = N_2O + O$	79.0	0.6	7.3	-6.7	9.7	0.0	9.7	13.2	0.0	13.2
$N_2 = 2N$	226.0	32.1	25.4	6.6	42.1	7.9	34.1	44.1	4.4	39.7
$NO = O + N$	151.0	7.3	47.0	-39.6	18.2	26.2	-7.9	20.6	21.7	-1.1
$N_2O = NO + N$	115.0	3.2	22.1	-18.9	18.2	17.4	0.9	21.5	16.5	5.0
$N_2O = O + N_2$	40.0	0.0	65.2	-65.2	0.0	41.2	-41.2	0.0	35.9	-35.9
$O_2 = 2O$	119.0	0.0	71.9	-71.9	4.2	35.8	-31.5	7.4	30.1	-22.6
$(NO)_2 = 2NO$	3.0	2.6	11.1	-8.4	2.8	7.8	-5.0	2.8	7.2	-4.4
$(NO)_2 = N_2O + O$	39.0	0.0	29.2	-29.2	0.0	13.8	-13.8	0.0	10.5	-10.5

* All molecules and atoms are surface species.

** D is the enthalpy of the analogous gas-phase reaction.


limit, are summarized in Table 7. As can be seen from these data, there is no qualitative difference between various surfaces of the same metal at low coverages. The reaction of N_2O decomposition occurs equally readily on all surfaces. The energetics of elementary reactions at zero coverages cannot explain the structural sensitivity. The results for Pd(111), Ni(111), Re(0001), Rh(111), Ir(111), Cu(111), Ag(111), and Au(111) are shown in Tables 8–10.

These theoretical data shed some light on the possible pathways of N_2O formation from NO (the activation energies in kcal/mol are shown under the arrows):

Table 11. Comparison of calculated and experimental values of the adsorption heats of N₂O at low coverages

Surface	Parameter	Ref.	Experimental value, kcal/mol	UBI-QEP value, kcal/mol
Pt(111)	Q_{N_2O}	[9]	6	9.8
Pd(110)	Q_{N_2O}	[63]	8.3	13.1
Pd(110)	$E_d - E_{diss}$	[14]	3.3	13.1
Ni(110)	$E_d - E_{diss}$	[19]	3.7	11.3
Ni(100)	Q_{N_2O}	[28]	6.2	11.3
Ni(100)	E_{diss}	[28]	2.5	0
Cu(111)	$E_d - E_{diss}$	[12]	10.4	8.4
Cu(100)	Q_{N_2O}	[43]	<6	8.4
Cu(110)	$E_d - E_{diss}$	[39]	2	8.4

Of the three possible pathways of this reactions on the Ag(111) surface at low surface coverages, the direct formation of N₂O from two NO molecules is the most probable. In the case of N₂O_{ads} formation via the dimer (NO)₂_{ads}, the activation energies of both steps are rather low. In the case of N₂O formation from NO_{ads} and N_{ads}, the dissociation of NO_{ads} requires overcoming a rather high barrier (18.2 kcal/mol). It should be taken into account that the direct formation of nitrous oxide is limited by the surface diffusion of NO, and the activation energy can be estimated by the following formula in this case [57]:

$$E_{diff, NO} = Q_{NO} \frac{n-2}{4n-2} = Q_{NO}/10 \quad (\text{at } n=3).$$

For NO adsorbed on Ag(111), this value is 2.1 kcal/mol. However, the channel of the reaction via dimer formation may start to play a more important role at higher surface coverages. On other metals, the situation is qualitatively the same.

Table 11 compares the results of calculations and experimental data obtained for the low surface coverages. The experimental values of Q_{N_2O} and the values of the difference of the activation energy of N₂O desorption and its dissociation on the surface ($E_d - E_{diss}$) should coincide, taking into account that the activation energy of dissociation is equal to zero at zero coverages. As can be seen, the agreement between the various experimental data is not good. Therefore, it is difficult to judge the correctness of the theoretical estimates.

CONCLUSIONS

Although substantial experimental information on the interaction of nitrous oxide with transition metal surfaces has been accumulated, several questions remain open. Specifically, the structural sensitivity of nitrous oxide decomposition cannot be explained by the

difference in the energetics of adsorption. Mechanisms proposed for this process do not describe well the experimental data for single-crystal surfaces. The nature of two precursors in nitrous oxide dissociation remains unclear. It is also unclear why rather favorable dissociation reaction of N₂O into NO_{ads} and O_{ads} does not occur competitively with the main reaction of dissociation into molecular nitrogen and O_{ads}. Data on the geometry of nitrous oxide adsorption are rather contradictory, and we do not know how this molecule coordinates to the surface. More detailed studies of energetics of this reaction for various surface coverages and microkinetic modeling of N₂O dissociation would possibly shed light on these issues.

ACKNOWLEDGMENTS

I am grateful to Professor E. Shustorovich for fruitful discussions and useful remarks.

REFERENCES

1. Leont'ev, A.V., Fomicheva, O.A., Proskurina, M.V., and Zefirov, N.S., *Usp. Khim.*, 2001, vol. 70, p. 107.
2. Kapteijn, F., Rodriguez-Mirasol, J., and Moulijn, J.A., *Appl. Catal., B*, 1997, vol. 9, p. 25.
3. Kharitonov, A.S., Sobolev, V.I., and Panov, G.I., *Usp. Khim.*, 1992, vol. 61, p. 2062.
4. Brown, W.A. and King, D.A., *J. Phys. Chem. B*, 2000, vol. 104, p. 2578.
5. Cornish, J.C.L. and Avery, N.R., *Surf. Sci.*, 1990, vol. 235, p. 209.
6. Schwaner, A.L., Mahmood, W., and White, J.M., *Surf. Sci.*, 1996, vol. 351, p. 228.
7. Ceballos, C., Wende, H., Baberschke, K., and Arvanitis, D., *Surf. Sci.*, 2001, vols. 482–485, p. 15.
8. Väterlein, P., Krause, T., Bäßler, M., Fink, R., Umbach, E., Taborski, J., Wüstenhagen, V., and Wurth, W., *Phys. Rev. Lett.*, 1996, vol. 76, p. 4749.
9. Avery, N.R., *Surf. Sci.*, 1983, vol. 131, p. 501.
10. Kiss, J., Lennon, D., Jo, S.K., and White, J.M., *J. Chem. Phys.*, 1991, vol. 95, p. 8054.

11. Beck, D.E., Hetzinger, J.M., Avoyan, A., and Koel, B.E., *Surf. Sci.*, 2001, vol. 491, p. 48.
12. Habraken, F.H.P.M., Kieffer, E.Ph., and Bootsma, G.A., *Surf. Sci.*, 1979, vol. 83, p. 45.
13. Spitzer, A. and Luth, H., *Phys. Rev. B: Condens. Matter*, 1984, vol. 30, p. 3098.
14. Haq, S. and Hodgson, A., *Surf. Sci.*, 2000, vol. 463, p. 1.
15. Horino, H., Liu, S., Hiratsuka, A., Ohno, Y., and Matsushima, T., *Chem. Phys. Lett.*, 2001, vol. 341, p. 419.
16. Ohno, Y., Kobal, I., Horino, H., Rzeznicka, I., and Matsushima, T., *Appl. Surf. Sci.*, 2001, vols. 169–170, p. 273.
17. Carabineiro, S.A. and Nieuwenhuys, B.E., *Surf. Sci.*, 2001, vol. 495, p. 1.
18. Li, Y. and Bowker, M., *Surf. Sci.*, 1996, vol. 348, p. 67.
19. Sau, R. and Hudson, J.B., *J. Vac. Sci. Technol.*, 1981, vol. 18, p. 607.
20. Arlow, J.S. and Woodruff, D.P., *Surf. Sci.*, 1985, vol. 162, p. 310.
21. Arlow, J.S. and Woodruff, D.P., *Surf. Sci.*, 1985, vol. 162, p. 327.
22. Kim, Y., Schreibels, J.A., and White, J.M., *Surf. Sci.*, 1982, vol. 114, p. 349.
23. Madey, T.E., Avery, N.R., Anton, A.B., Toby, B.H., and Weinberg, W.H., *J. Vac. Sci. Technol. A*, 1983, vol. 1, p. 1220.
24. Umbach, E. and Menzel, D., *Chem. Phys. Lett.*, 1981, vol. 84, p. 491.
25. Huang, H.H., Seet, C.S., Zou, Z., and Xu, G.Q., *Surf. Sci.*, 1996, vol. 356, p. 181.
26. Daniel, W.M., Kim, Y., Peebles, H.C., and White, J.M., *Surf. Sci.*, 1981, vol. 111, p. 189.
27. Onchi, M. and Farnsworth, H.E., *Surf. Sci.*, 1969, vol. 13, p. 424.
28. Hoffman, D.A. and Hudson, J.B., *Surf. Sci.*, 1987, vol. 180, p. 77.
29. Kodama, C., Orita, H., and Hozoye, H., *Appl. Surf. Sci.*, 1997, vols. 121/122, p. 579.
30. Redmond, J.P., *J. Catal.*, 1967, vol. 7, p. 297.
31. Redmond, J.P., *J. Phys. Chem.*, 1963, vol. 67, p. 788.
32. Riekert, L. and Staib, M., *Ber. Bunsen-Ges. Phys. Chem.*, 1963, vol. 67, p. 976.
33. Barker, F.G. and Gasser, R.P.H., *Surf. Sci.*, 1973, vol. 39, p. 136.
34. Gasser, R.H.H. and Marsey, C.J., *Surf. Sci.*, 1970, vol. 20, p. 116.
35. Uetsuka, H., Aoyagi, K., Tanaka, S., Yuzaki, K., Ito, S., Kameoka, S., and Kunimori, K., *Catal. Lett.*, 2000, vol. 66, p. 87.
36. Fuggle, J.C. and Menzel, D., *Surf. Sci.*, 1979, vol. 79, p. 1.
37. Weinberg, W.H. and Merrill, R.P., *Surf. Sci.*, 1972, vol. 32, p. 317.
38. Klein, R. and Siegel, R., *Surf. Sci.*, 1980, vol. 92, p. 337.
39. Habraken, F.H.P.M. and Bootsma, G.A., *Surf. Sci.*, 1979, vol. 87, no. 2, p. 333.
40. Onchi, M. and Farnsworth, H.E., *Surf. Sci.*, 1969, vol. 13, p. 424.
41. Klein, R. and Siegel, R., *Surf. Sci.*, 1980, vol. 92, p. 337.
42. Masel, R.I., Umbach, E., Fuggle, J.C., and Menzel, D., *Surf. Sci.*, 1979, vol. 79, p. 26.
43. Johnson, D.W., Watloob, M.H., and Roberts, M.W., *J. Chem. Soc., Chem. Commun.*, 1978, no. 2, p. 40.
44. Dumas, P., Suren, M., Chabal, Y.J., Hirschmugl, C.J., and Williams, G.P., *Surf. Sci.*, 1997, vol. 371, p. 200.
45. So, S.K., Franchy, R., and Ho, W., *J. Chem. Phys.*, 1989, vol. 91, p. 5701.
46. So, S.K., Franchy, R., and Ho, W., *J. Chem. Phys.*, 1991, vol. 95, p. 1385.
47. Nelin, C.J., Bagus, P.S., Behm, R.J., and Brundle, C.R., *Chem. Phys. Lett.*, 1984, vol. 105, p. 58.
48. Behm, R.J. and Brundle, C.R., *J. Vac. Sci. Technol. A*, 1984, vol. 2, p. 1040.
49. Brown, W.A., Gardner, P., and King, D.A., *J. Phys. Chem.*, 1995, vol. 99, p. 7065.
50. Brown, W.A., Gardner, P., Perez Jigato, M., and King, D.A., *J. Chem. Phys.*, 1995, vol. 102, p. 7277.
51. Ohno, Y., Kimura, K., Bi, M., and Matsushima, T., *J. Chem. Phys.*, 1999, vol. 110, p. 8221.
52. Sharpe, R.G. and Bowker, M., *Surf. Sci.*, 1996, vol. 360, p. 21.
53. Jansch, H.J., Huang, C., Ludviksson, A., Rocker, G., Redding, J.D., Metiu, H., and Martin, R.M., *Surf. Sci.*, 1989, vol. 214, p. 377.
54. Scholten, J.J.F., Konvalinka, J.A., and Beekman, F.W., *J. Catal.*, 1973, vol. 28, p. 209.
55. Shi, S.-K. and White, J.M., *J. Chem. Phys.*, 1980, vol. 73, p. 5889.
56. Shustorovich, E., *Adv. Catal.*, 1990, vol. 37, p. 101.
57. Shustorovich, E. and Sellers, H., *Surf. Sci. Rep.*, 1998, vol. 31, p. 1.
58. Sellers, H. and Shustorovich, E., *Surf. Sci.*, 2002, vol. 504, p. 167.
59. Irokawa, K., Arai, H., Kobayashi, J., Kioka, T., Sugai, S., Miki, H., and Kato, H., *Surf. Sci.*, 1996, vols. 357/358, p. 274.
60. Rice, O.K., *J. Chem. Phys.*, 1936, vol. 4, p. 367.
61. Shustorovich, E., private communication.
62. Shustorovich, E., *Surf. Sci.*, 1987, vol. 181, p. 205.
63. Kokalj, A., Kobal, I., Horino, H., Ohno, Y., and Matsushima, T., *Surf. Sci.*, 2002, vol. 506, p. 196.